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Abstract. In this work we consider superintegrable systems in the clasRigahtrix method.
By using outer automorphisms of the loop algebras we construct new superintegrable systems
with rational potentials from geodesic motion &3".

1. Introduction

We shall consider classical integrable Hamiltonian systems on the coadjoint orbits of finite-
dimensional Lie algebras according to [1]. The dual spgde the Lie algebrg is equipped

with the natural Lie—Poisson brackets specified by the condition that the Poisson bracket of
two linear functions org* coincides with their Lie bracket ig. Let H be a function on

g*, VH € g the gradient ofH. In the spaceC*(g*) of smooth functionsH determines

the evolution with the associated Hamiltonian equation

x=—(@dy,)  x xegh. (1.1)

If g is self-dual, i.e. has a nondegenerate inner product which allows us to idghtifith
g and ad with ad, then (1.1) takes on the usual form

x={H,x} =—(adyy) - x X €g. 1.2)

Henceforth we shall always identify* with g and ad with ad.
Functionl € C*(g) is called an integral of evolution with a Hamiltonidi if

{H,1}=0.
The evolution on a2-dimensional symplectic manifolsf with the HamiltonianH is called
completely integrable if there existsfunctions!s, ..., I,, which are independent integrals
in the involution for the HamiltoniarH

{I,,[}=0 i, j<n. (1.3)
The functionsiy, ..., I, are independent, if formsld, ..., dI, are linearly independent on

the common level surfaces of these functions.
The evolution on a manifold, dimM = 2»n with the HamiltonianH is called
superintegrable or degenerate, if there exists more thamdependent integrals of motion

{Ij}jf:l, k > n andn of which are in the involution (1.3) [1, 17, 24]. For the superintegrable
systems all the integrald; }le, k > n are generators of the polynomial associative algebra,
whose defining relations are polynomials of certain order in generators (see [4, 5] for a
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collection of original papers). The main example of the superintegrable systems is a free
motion with the following Hamiltonian and equations of motion:

H=Y) p; d=p  p=0 (1.4)
j=1

here p;, ¢; are canonical variables aif = R?". Integrals of motion in the involution and
additional integrals of motion may be defined as

I, = Pf Jik = Pigk — qi Px- (1.5)

Other known classical superintegrable systems with arbitrary numbers of degrees of freedom
are the harmonic oscillator, the Kepler problem and the Calogero system [20]. Note that
the Kepler problem and the Calogero model may be obtained from the geodesic motion
(1.4) on spaces of constant curvature [20]. Other examples of superintegrable systems can
be constructed by using either purely algebraic techniques [1, 4, 5, 17] or the separation
of variables method at = 2,3 [24, 8, 5]. Some individual examples of superintegrable
systems are listed in [20] with the corresponding references.

Our aim is to show how superintegrable systems fit into a general pattern based on
the notion of the classicak-matrix [10, 21]. The main advantage of such embedding is
that important structure elements for superintegrable systems, such as a Lax representation,
separation of variables [5] and spectrum-generating algebra (dynamical algebra) [4, 18] can
be systematically derived from the underlying stand&anatrix formalism, which is a
prerequisite for the study of the quantum case.

As an example, let us consider the degenerate geodesic motion (1.4)—(1.5). Introduce
an arbitrary set of point§,};_, and define some functions(1), x (1) with the following

property
PN |r=s, = Pk X (A |r=s, = Xk.

The explicit form of the functions is not very important here. By using these functions the
involutive family of integralsl; (1.5) may be generated by a one-variable functigh)
whereas the second set of integrls(1.5) can be recovered from the two-varialile., )
function only

I = T(M)lazs, = P?(M)lrzs,
Jit = T, () lhmsin=s, = [PR)x () — x(A) p() =5, =5 -

Keeping this analogy in mind, to consider superintegrable systems on the loop algebras
L(g, 1), we introduce the multivariable universal enveloping algebrag£@f 1). In this
case the complete set of nhoncommutative integrals of motion is defined on the special
algebraic surfaces.

We propose a dressing procedure allowing us to construct the new superintegrable
systems starting from known ones. As a natural initial point we shall select a geodesic
motion (1.4) on the Riemannian spaces of constant curvature. To construct the new
Lax equations associated with a potential superintegrable motion we apply the outer
automorphism of the underlying algebga[25] directly to the Lax equations associated
with a geodesic motion.

The paper is organized as follows. In section 2 we briefly recall the notion of the
classicalR-matrix method. In section 3 superintegrable systems are construcikedhiirix
formalism, while section 4 contains some examples.
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2. Method of the classicalR-matrix

A systematic way for realizing an integrable Hamiltonian system on coadjoint orbits of the
Lie algebras is provided by th®-matrix method [10, 21].

Recall that the classicat-matrix on a Lie algebrg is a linear operatoR € End(g)
such that the bracket an

[X. Y]z = 3((RX, Y] +[X, RY]) X,Yeg (2.1)

satisfies the Jacobi identity [21, 22]. In this case there are two structures of a Lie algebra in
the linear spacg* given by the original Lie bracket and th-bracket (2.1), respectively.
Definition of the second algebraic structure associated Ritirackets is motivated by the
following result. LetJ(g) be the ring of Casimir functions og*. Functionst; € J(g)

are invariants with respect to the original Lie structure and they are in the involution with
respect to theR-bracket ong*. Namely, if T is an invariant of the coadjoint action @f

the associated Hamiltonian equation (1.1)gdnis equal to

dL

i —ad; - L A = ZR(dr(L)) Leg. (2.2)
If g is self-dual, so that dd= ad, then equation (2.2) takes on the usual Lax form [21]

dL

— =[L,A

5 = [L.A]

and theR-bracket (2.1) can be rewritten in tensor form [10, 21, 22].

It is obvious, that for anyR-matrix in (2.2) all the Casimir functiong on g* give rise to
integrals of motion in the involution [10, 21]. Our aim is to find the origin of an appearance
of the special superintegrable Hamiltonians and their additional integrals of motion in this
method.

Finite-dimensional, simple Lie algebraslead to generalized Toda lattices and other
mechanical systems that may be integrated in elementary functions [10, 21, 22]. This
excludes the most interesting examples of integrable systems which come from analytical
mechanics, since their solutions are Abelian functions of the time variable. In order to
obtain dynamical systems of this type, one has to consider the class of the so-called affine
Lie algebras, or loop algebra¥g, 1) [21]. Recall, that loop algebré(g, ) can be realized
as an algebra of the Laurent polynomials with coefficientg in

L(g, ») = g[r, 271 = {x(k) => x), xe g}

and with the commutatorcp, yA/] = [x, y]A .
Let L(A) € L(g, ») be a generic point in the loop algebra, which is regarded as a Lax
matrix. The tensor form [10, 21, 22] of the correspondidpracket is given by

{L1(V), La(u)} = [ri2(x, ), L1(W)] = [ra1(, w), La(u)]
ra1(A, u) = Prorio(A, ) P12

where Py, is a permutation operator id(g, A) ® L(g, u) andr;;(x, u) are kernels of the

corresponding operato® and R* in (2.1) [22]. Note that theR-matrix scheme is extended

easily to the twisted subalgebras of loop algeb(g, A) and the corresponding matrices

have rational, trigopnometric and elliptic dependencies on spectral parameters.
According to an algebra homomorphism [12]

U(L(g, 1) — C[a, A" ® U(g)

2.3)
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we can construct the one-variable universal enveloping algélotag, 2). In this case the
Casimir functions on the loop algebras can be recovered by the ad-invariantsn J(g)

Tjp = Reg—0p (1) - 7;(x (1)) 7j(x) € J(@) ¢ () € Cr, A71] (2.4)

where ¢ (1) is some rational function of the spectral parametewith numerical values
[21].

It is obvious, that an application of the ad-invariant functiapss a basic tool in the
R-matrix method [10, 21] and, therefore, we consider these functions in greater detail to
assume the standard identification of the dual spaces.

To begin with let us recall some necessary facts from the notion of a universal enveloping
algebra [6]. Letg be a Lie algebra and (g) be the tensor algebra of the vector spgce

T=T0T'e®T?... T"=gQg® - ®g n times (2.5)
If J is the two-sided ideal of' generated by the tensors
x®y—y®x —[x,y] xX,y€g

then the associative algebra J is called the universal enveloping algebra, which is usually
denoted byU (g).

Let m > 0 be an integer. The vector subspacelbfg) generated by the products
X1x2...xj, wherexy, xa, ..., x; € gandj < m is denoted byU,,(g). We have

Up(g) =C-1 Ug) =C-10g Ui(@U;(g) C Uitj(9).

This sequence is the canonical filtration ©@fg).
According to the Birkhoff-Witt theoren'(g) = J & S(g) and algebralU(g) is
isomorphic to the symmetric algebfdg) as a vector space. M, x2, ..., x, € g, then

1 1
W(X1X2. .. Xpy) = o Z Poxixp...x, = o an(l)xn(z) oo X (m) (2.6)
4 4

here P, means the permutation operator corresponding to a certain Young diag[éin
The mapw (2.6) is a bijection ofS(g) onto U(g), which is called the symmetrization.
The Casimir functions or the ad-invariant functions gifiorm a centreJ(g) of U(g).
The symmetrization mapping (2.6) allows us to constiig) by using the ad-invariants
of commutative algebr&(g) [6].
Studying the superintegrable systems we have to introduce the multivariable tensor
algebra

T rp..)=T'&T*eT?. ..

i 2.7
T"(g, Ay s, v) = L(g, M) ® L(g, ) @ -+ ® L(g, v) m times @D

and canonical filtration of the corresponding enveloping algéb@ 2, i, ...) generated
by subspace¥,, (g, A, u«, ..., v). These vector subspaces are produced by subspadegs

Xigigoiy Ay oy ooy V) = E Xigi.. iy M2 L k<m Xisin.ix € Un(9).
JsJ2sees Ji

In just the same way as for a Lie algelyd6], one defines the canonical mapping of the
loop algebral(g, A) into U(g, A, u,...). Any elementL()) of L(g, A) can be embedded
into Uy, (g, A, i, ..., V)

Li(xj) = di®-® id_,'_l QL) ® id_,‘+1 ® - -®id, € Uy(g, A, i, ..., V) (2.8)
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and
' k
LY (aha .. h) = ]_[1Ljn (*;,) 1<k<m (2.9)
L™, ..., v) =LA QL) ®---® L(v) m times (2.10)
Herers = A, Ao =, ... Ay = v.
The Poisson brackets between the elemérjc.ﬁg.jk (A, w, ..., v) (2.9) can be written in

the ‘generalized’R-matrix form. For instance
{L12(A, 1), L3(v)} = [r13(A, v) + r23(, v), L12(A, )] — [r3a(A, v), L2a(u, v)]
—[ras(u, v), L1s(x, v)] (2.11)

wherer;;(A;, A;) are R-matrices, which act nontrivially in the corresponding subspaces of
Tu(g, A ity ..., v) (2.7) and

{L12(h, ), Laa@, m} = [rP O, w, v, ), LiW] + [r@ O,y v, ), La()]

—[r® G, v, m), Ls)] = [F PG e, v, 1), La(n)] (2.12)
where

rO G, e, v,m) = F v, 0) + Paaf (G, iy, v) Pag

r@, v, m) = Prr® (u, &, v, ) Pra

r@ O, w, v, m) = PualF(h, i, v, 1) + PaaF (i, A, v, ) Pra Pra

r® 0O, v, m) = Paar® (O, 1, m, v) Pag

F(h, v, 1) = riz(k, v) Laa(u, n).
Here P;; are operators of pairwise permutations in the tensor alg&hta, A, i, ..., v)
(2.7).

Integrals of motion in the involution are completely defined by the ad-invariants (2.4)
of L(g,») and by the linearR-bracket (2.3) [10, 21]. Description of the superintegrable
systems requires us to consider ad-invariants of the multivariable al@géra., u, ...),
more complicated embeddingj(.fj).zmjk (A, i, ...,v) (2.9) and (2.10) and analogue of the
symmetrization mapping.

Theorem 1If the second Lax matri (1) is independent on spectral parametethen the
following elements of the multivariable algebt&(g, A, u, .. .)

L0, .. v) = PnL(lkz)..k(M, A2y oo, M) = Lff()l)n(z)mn(k) Ax@s Ax@)s -+ > Ark))
(2.13)

give rise to integrals of motion. HerB, means the permutation operator corresponding to
a certain Young diagram.

Since A(A) is independent ok we have that the equation of motion for the elements
L%, w,...,v) has a Lax form

%L(’”’)(k, fo..,v)=[LEDAW]

k

k
AB =400 =D Ay Cai)-

Jj=1 Jj=1

Of course, to construct the degenerate systems we have to prove that one can obtain
the sufficient number of the functionally independent integrals of motion from the elements
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(2.13). We have to solve this problem for any given superintegrable system on the loop
algebras. It may be quite difficult to decide which Lie algebra is associated with a given
mechanical system. As usual, the way around this difficulty is to reverse the reasoning and
to study all possible dynamical systems associated with a given Lie algebra. Therefore, in
the next section, we consider degenerate systems associated witlinthalgebra.

3. Superintegrable systems omsl(n)

As an application to the integrable systems let us suppose, for concreteness, that every
elementL (1) of the loop algebraC(g, ») be a matrix in some fixed matrix representation
of the algebrgg and the representation space be an auxiliary space [10]. Now we study an
algebrag = si(n, C) in the fundamental representation and begin with the standard rational
R-matrix [10, 21]. In this case let the elemehti) of L(g, A) be an x n matrix in the
auxiliary spaceC" and the matrix elements df(1) be some rational functions of spectral
parameten.

The basis of invariant functions i(s/(n, C)) could be selected as

(L)) = %tr LF() k <n. (3.1)
The family of the integrals of motion in the involution is generatedrpgl. (1)) [10, 21]
Lix(L) = @ (1 (1) (3.2)

where " are various linear functionals defining a set of the functionally independent
integrals of evolution. For instance,

o (2) = Reo(@i(h) -5 $i(h) € Clr, A7 (33)

here ¢; (1) are some functions of spectral parameter with numerical values. In this case
integralsl; , are at mosk-order polynomials in generatogsand /; , € Ui(g).
The Lax equation (2.2) associated with the Hamiltonign(3.2) is equal to

dL(w)
P = (i L) = [LG0), A0 (3.4)

where the second Lax matrik; , has the form

Aik(p) = O try(rza(, ) L)) (3.5)
here trace tris taken over the first auxiliary space.

Let the representation space of the subalgetijag, A, «, ..., v) be an extended

auxiliary space

Vi =@ Vi=Vi@Va®---QV, Vv, ~ C". (3.6)

In this case the elemenis (1;) (2.8) andLj(fJ).zmjk A, i, ..., v) (2.9) belonging to the algebra
Un(g, A, i, ...,v) are then™ x n™ matrices inV
L) =h® - [L1®LA)®[11®---® I,

L 3.7
L(k)(k,u,...,v):l_[Lj(Aj) A=A A2 =iy hy =V (3.7
j=1

herel means a: x n unit matrix and the subscript shows in which of the spacédg in
the whole spacé ™ the matrixL (1) acts nontrivially.
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The equation of evolution for the matrix™ has a commutator Lax form

%L(’")(k, W) =[L0 ..., 0), A0 @, 0] (3.8)

with the following second matrix
A(m)(k,u...,v):ZAj(Aj) A=A A2 =ty hy =V (3.9)
j=1

which is a sum of the matrices;(1,) of the type (3.7) acting in the whole spacg&§”.
The spectral invariants of the matrice§™ give rise to a family of the integrals of motion
in the involution as before.

Let us introduce matrices

L™, .., v) =P L™, ..., v) = PaLi(M)La(i) ... L, (v). (3.10)
Here the permutation matriR, in V™ is determined by

Pr(x1®@x2Q - Q@ Xp) = Xp1) ® Xz2) @+ + @ Xr(m) (3.11)
for any set of vectors; in C" or

Py -A1Bs... Dy = An1yBr .. Dugmy - Pr P2=1 (3.12)
for anyn x n matricesA, B, ..., D embedding invV " according to (3.7). The permutation

of subscripts in (3.11) and (3.12) is defined by a certain Young diagrdf¥].
For all the integrable systems the equations of evolution for the matfited are
given by

d
EL(’"’”)(A, woov) =LMmOAMO o vy — A0 ., )L™, (3.13)

where matrixA®™ is given by (3.9) and the second matut¢™ ™ differs from it by the
permutation of spectral parameters in accordance with the Young diagram

AL v) =P A™ O .. )Pt
m
= ZA_,-()\,,U)) A=A Ao =y A = D
j=1

The right-hand side of (3.13) is a matrix commutator if and only if

A G v) = AT O0v) &= AQy) = AQu))- (3.14)
It is easy to prove, this equation (3.14) is valid if eitbs.) = A is independent on spectral
parameters or all the spectral parameters at (3.14) are egual = --- = v.

Assuming (3.14) holds we can define new multivariable generating functions of the
integrals of motion

T _ 1 (m,m)
S, o, v) = =1 L A, p...,v)
mn (3.15)

d
Esi(k,u...,v)zo.

The trace t, in (3.15) is taken over the whole spagé™.
Now, from the theorem 1 one obtains the following.

Corollary 1. Superintegrable Hamiltonian systems on the loop alg€lisé(n), 1) relate to
a special point of the classic&-matrix.
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It is essential that condition (3.14) is fulfilled for the independent on spectral parameter
matrix A in (3.4)

Aim = O tri(ra(h, ) LT(0)) = constant# 0.

We observe that matrid; ,, depends on spectral parametewia R-matrix only. Hence,
the constant in the spectral sense mattix= A(w) in theorem 1 and the corresponding
special degenerate Hamiltonian are related to the singular points &-thatrix.

As an example, the standard ratiormatrix for algebrasi(n, C) is equal to

P
rio(h, p) = —2—. (3.16)
A—p
We can choose the special linear functional in (3.5) as residue at infinity
@, (z) = —Reg—x(¢(A) - 2) (3.17)
such that the second matrix
2z Lm—l 2
A(p) = —tn |:P- lim M} (3.18)
A—>00 A — "

is independent of spectral parameterMoreover, if some invariant polynomia} (1) (3.1)
has a nontrivial residue at= oo on the phase space

H = —Reg,—c¢p (M) (1) (3.19)
which is chosen as a Hamiltonian, the corresponding Lax mair{8.18) does not equal
zero. In this case the singular poiAt= oo of R-matrix (3.16) is associated with the

superintegrable Hamiltoniafl (3.19) and with the new multivariable generating functions
of the integrals of motion (3.15)

{H,s; (A, u,...,v)} =0. (3.20)

For the algebral(n) we lose the property of involution for these new multivariable functions
and for the corresponding integrals of motion

{S;’T/lm ()“1’ )"2’ ce )“m)’ S;:k (I'Ll’ /"L27 cec :u’k)} 7é 0‘ (321)

These brackets are completely recovered by the polynoRvbiackets for the matrices
L™™  as an example see (2.11) and (2.12).

Corollary 2. Complete set of integrals is determined by the generalized spectral surfaces

Cz, A, p...v)y=detzl + L™, u...v)) =0 m<n V. (3.22)
At A1 = A, = --- = A, cross sections of these surfaces are equivalent to a usual spectral
curve of L(1) determined by the characteristic equation

C(z,A) =det(izI + L(A) =0 (3.23)

which gives rise to integrals in the involution only.

The first proposition follows from the Lax form of the equation of motion. In additional,
for any Hamiltoniand; ; (3.2) condition (3.14) is always fulfilled for the equivalent spectral
parameters

A:)»j:)uﬂ(j) j:l,...,}’l Vr (324)
that corresponds to a choice of another basis of ad-invariant functions in the gégtre
[14] by using the outer powers of matrix())

1
sm(X) = Ztr(m) LMD ko, ). (3.25)
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Symmetric functionss,, (1) can be expressed in the symmetric functiongi) (3.1)
according to Newton’s formulae [14] and functiong(i) give rise to integrals in the
involution.

Next let us consider Belavi®R-matrices [2], which are meromorphic solutions of the
classical Yang—Baxter equation such that

ri2(d, ) = ri2(A — ) = —raa(u — A)

P 3.26
—12M+O(1) Pox®y=yQ®x (3.26)

that defines the expansion gf in the neighbourhood of the singularity at= 1. Here
r;; are rational, trigonometric or elliptic matrix functions on spectral parameters [2, 10, 21].
These matrices have a polejat= © with a permutation operataP;, (3.26) as a residue.
In addition, the rational function(x — ) of two variablesx and u has the special point
at A = oo in its domain of definition. In this point function(A — ) has a distinct-
from-zero residue, which is independent of the second spectral pargmeidre generally
accepted ellipticR-matrices [2, 10, 21] do not have such special points in their domains.
Nevertheless, a construction similar to the rational case can be proposed as well.

The Lax equation (2.2) anR-bracket (2.3) are covariant under a similar transformation

L—ULU A— UAU rij — UtU; U0 (3.27)

rio(A — p) = T

where U is a constant matrix on a phase space. If the mdirixlepends on a spectral
parameter, we can use similar transformations to construct additional poles Rfrttaerix.
In this case the multivariable generating functiefj$, u, ..., v) are changed

1
SpA, iy o) > sy, V) = - tron[ZL(A) @ L() ... ® L(v)] (3.28)
here projectorP, in (3.20) is substituted by a matrix
Z, =[UMNQUW) ..UM ™ P, - UM QU ... U(v) (3.29)

depending on spectral parameters. For the equivalent spectral-parameter fungtions
are covariant under similar transformations.

As an example, we study an elliptR-matrix on the twisted-loop algebré(s/(2), o).
Let us consider the periodic lattide = 2KZ + 2iK'Z, whereK and K’ are the standard
elliptic integrals of the modulé& € [0, 1] and introduce the corresponding elliptic theta
function ®;; (1, k) as in [23]. In this notation the standard elliptzmatrix is

3
r(h—p) = Zwk(k—m -0 ® ok (3.30)
k=1

whereo;, are Pauli matrices and

07,00, £)®10(1, k) wa(h) = ©7,(0, k)Ogo(X, k)
010(0, k)O11(X, k) ©00(0, £)O11(A, k)
07,0, k)Op1 (2, k)

©01(0, £)O11(A, k)

The functionr (* — u) (3.30) is meromorphic i€ and has simple poles at= x modr.
According to [23] we introduce the similak-matrix

PO 1) = Uy (hy b hoo)T (A — ) Ur2(R, 12, hoo)
Uso(hs , hoo) = Ur(h — Ao + K)Ua(jt — oo + K)

wi(A) =

w3(A) =




2084 AV Tsiganov

with the following matrixU (1)
Oo1  Oqo ~ 2¢ NI
U) = Jk A= — k=——
@) <—®00 —901>($ ) 1+k 1+k
herei, is an arbitrary point. ThisR-matrix p(A, ) has been introduced for the purpose

of separating the variables in [23]. More explicitly
3

(3.31)

p, ) =) wik—p k) 0 ®0; +[ws(it — Ao, k) — wz(h — Aoo, k) + wo] - 03 ® 03
=1
Hw(p — Aoo, k) - 03 ® 02 — 1WA — Aeo, k) - 02 @ 03 (3:32)
©Y O10(, k) 01, (4. k)
k)= A k) = Ak = _—_ M=k
w( ) wi( ) wa( ) O10 ®ll()”7k) w3(A) O11(A, k)

herewg is a some constant [23]. Let the poles@fr, 1) by the first spectral parametgr
be at the points

A = modl’ Red,—,o(,nu) =P
A = Ao MmodD’ Res, o oA, ) =Z = (03 +0- +04) @ 03.
So, if L()) is an orbit of the newrR-matrix p(A, i), such that the second matrix

A=tr [z - lim gb(k)L(A)] £0
is a nontrivial constant in a spectral sense, the special Hamiltonian
H = Reg,—,. trl¢ 0)L?(3)]

is superintegrable.
In the next section we present some nontrivial exampleR-afatrix orbits associated
with superintegrable systems for the ratio®amatrix.

4. Examples

The above construction of superintegrable systems can be applied to the Gaudin magnet,
which was introduced in quantum mechanics [11]. The classical version turned out to be
a useful example for developing a general group-theoretic approach to integrable system
[10, 21].

We shall consider the rational Gaudin magnet relatesl ¢&) algebra. The model in

guestion is defined on th& coadjoint orbits ofs/(N)* in variablest]f”), m=1,....,M,
i,j=1,...,N). The corresponding Lie—Poisson brackets are
(X, XY = 8 (X[ 850 — X 80). (4.1)

The coadjoint orbits are fixed by valut;fé” of the ad-invariant functions osi(N)
" =kt (x ™)k e C. (4.2)

The Poisson bracket (4.1) is nondegenerate on the manifold (4.2) having dimension
n = MN(N — 1)/2 for the case of generic orbits (afl”’ are distinct). In what follows we
assume that the orbit is generic.

Fixing some elemenZ e sI(N) as a residue at infinity we consider the special Lax
matrix L(A) € L(Dsl(N))

M x(m)
Loy=Z+). — (4.3)
m=1" " 9m
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where{é,,} is a set ofM arbitrary constants. MatriX.(A) obeys the lineaR-bracket (2.3)
[10, 21] with the rationalR-matrix (3.16).
The basis elements (3.1) are meromorphic functions af

w(h) = 5”22@_5 X

m=1j=1

here& = k~*tr zF and 1%, = 1" are fixed constants. Other residués, form a family
ofn =MN(N —1)/2 mdependent integrals in the involution. It is immediately seen that
the special Hamiltonians in this family

M
H® = —Reg;_ni(h) = ) Reg;o, u(h)

are nondegenerate functions on the generic coadjoint orbk& &f)* and they correspond
to the constant in a spectral sense second Lax matrix (3.5)
A(k) — Zkfl'

So, Hamiltoniansd ® are superintegrable Hamiltonians and a complete set of the integrals
of motion can be generated by (3.20). As an example, additional independent integrals of
evolution may be constructed from the quantities

I, =Ress, (A, u,...,v). (4.4)
Here Reg means the residue of some fixed orélet (k1, ko, ..., kn), k; < K; at the points
A=36; =3j, ..., v =20,
which belong to the divisor of the poles of a multivariable functigix, u, ..., v)

D={(¢;,K;),j=1...,M,(c0, D}

As a second example, let us consider superintegrable natural systeR#% warith the
following Hamiltonians:

H:T+V=Za,-jp,»pj+V(q1,...,qn) Cll'jGR (45)

where {p;, qj}i_, are canonical variables. Several systems with the superintegrable
Hamiltonians of the form (4.5) may be described by using 2 Lax matrix in the form

h e
L= (4 ) o @.6)

which satisfies the lineaR-matrix algebra (2.3) with some matrix;. Matrix L(1) has a
single invariant polynomial (3.25)

s2(0) = $t[PL(AW) ® L(W)] = detL(A) = —3tr L?(0) = —112(0) 4.7

and one second-order complementary polynomial (3.20)
eV f(p) + f(M)e(w)
> .

These polynomials will be the generating functions of the integrals of motion for the our
superintegrable Hamiltonians (cf (1.5)).

If the potentialV in (4.5) is equal to zerd (¢, ..., ¢,) = 0 we find geodesic motion,
which is superintegrable. It is known [15], the Lax representation (4.6) associated with
geodesic motion may be regarded as a generic point of the loop algefisa(2)) in a

52k, ) = ZUTPL() ® L(w)] = h(Mh(p) + (4.8)
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fundamental representation after an appropriate completidi(gi2)) associated with an
arbitrary fixed divisor of poles [21]

D=A{@¢;,1l;),j=1,....,M, (00, K)}.
Namely, according to [13], let us introduce functiefl) on the spectral parameterand on
the flat coordinateg; with its time derivativee, (A) = {H, e(A)}, whereH is a Hamiltonian

of the geodesic motion (4.5) and the dependence(bf on the coordinateg; is defined
implicitly. Nevertheless, in the Lax equation

L.(A)={H,L}=][L, A].
We define matrice. and A by

| —ex/2 e _ (0 1
L) = (—em/Z ex/2> ) AA) = (O 0) . (4.9)

Below we prove that this Lax equation is associated with geodesic motion and the
corresponding Hamiltoniai#/ (by V = 0 at (4.5)) is equal to the highest residue at the
distinguished Weierstrass point on the spectral curvé@f (3.23) at infinityr = oc.

To construct the Lax representation for a potential motion we can use the outer
automorphism of the space of infinite-dimensional representations of underlying Lie algebra
s1(2) proposed in [25].

Applying this automorphism of the algebt&2) directly to the Lax representatiai(i)

(4.6) onL(sl(2)) we obtain a family of the new Lax pairs

L'A) =LA —o_-[¢pMe*M)]un
4.10
AN =A—o_-[pMN)e>WV]uy = <uM1(3(A) é) . ( )

The corresponding Hamiltoniaf’ at the Lax equation (3.4)) remains to equal residue of
the same order as for an initial geodesic motion, i.e. linear functidna(3.2) is invariant
under the mapping (4.10).

Functiong (1) at (4.10) is an arbitrary function on spectral parameter ahgy means
a restriction ofz onto the afj-invariant Poisson subspace of the initRdbracket [13, 25].
For the rationalR-matrix (3.16) we can use the linear combinations of the following Laurent
projections

+00 N
[zlmn =|: Z Zk)\k] = Z Ak (4.11)
MN

k=—00 k=—M
or the Taylor projections by/ = 0.

Mapping (4.10) plays the role of a dressing procedure allowing us to construct the
Lax matricesL),, (1) for an infinite set of new integrable systems starting from the single
known Lax matrixL (i) associated with one integrable model. The Lax matriga.) (4.10)
obeys the lineaR-bracket (2.3), where constanj-matrices are substituted bg.-matrices
depending on the dynamical variables

(e 2M]Iun — [¢(we 2(w)un) '
*—=mw

Associated with the matrices(1) (4.9) andL’(1) (4.10) generating functions(1) and

s5(1) (4.7) obey the following equations of motion
ds2(A)

dr

ds5 (1)
Cdr

o_Q®o_. (4.12)

ri2(h, ) = ri; =rio —

=0= 3%e()) =e,,, =0

(4.13)
=0= [203 + upn(W)dx + 2upy (V] - e(r) = 0.
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The integrated form of these relations (4.13) are

N

e-e, e

s2(2) = -
2.4 (4.14)
L) = € €xx e—x+e2~u )
2 - 2 4 MN .
A simple substitution for the entries of matrix(1)
e(r) = B? h()) = —e, /2 = —BB,
) ) ) / (4.15)
f()‘-) = _exx/z = _Bx - BBxx
turns determinants (4.14) into the form
A
s2(0) = BB, s5(A) = BB, + B* ["51;4)] (4.16)

if we use an explicit formula for the potential,y(1). These equations have the form of
Newton’s equations for the functioi

Bxx = SZ()L)B_s

4.17
Bxx=sg(x)8—3—6[fm] . (“17)

84
To expand functior3(A) at a Laurent set, for example

N
B=) av-¥
=0

it is easy to prove that the coefficients obey Newton’s equation of motion with a
Hamiltonian of the form (4.5). Here we reinterpret the coefficients k) and s5(1)
in (4.17) not as functions on the phase space, but rather as integration constants. These
expansions may be considered as an appropriate parametrization of the fuitiionflat
coordinates;;. Note, in variableg; mapping (4.10) affects only the potentigt¢ependent)
part of the integrals of motiod,. The kinetic (momentum dependent) partpfremains
unchanged. So, the dress mapping (4.10) allows us to change from a free mofitsf on
to a potential motion oR?",

Namely, the functiore(}) is given by

e()) = Ze A +ZZ 5 % (4.18)

j=1 k= 1
and the Hamiltoniard associated with the Lax representation (4.9) or (4.10) is equal to a
highest residue of dét(A) at infinity A = oo

®,(2) = Regi—oo (A% 2). (4.19)

Recall, that this functional defines Hamiltonians (3.2) for a geodesic motion and for all
the potential motions simultaneously. Then the residiyesnd e, are easily restored in
variables{g;}7_; by using the functiorB. As a first example, in the simple polesiat §;,
function e(A) = B? (4.18) has the following residuag; = qu. Parametrization of the
residues in the higher-order poles is discussed in [13]. As a second example, we consider
the polynomial part ok () corresponding to a pole at infinity. Let

K
By =) qx-j) (4.20)
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with go = 1 and
K ) K ) K )
e =Y e h(O) =Y hj)) FOy=>"fir (4.21)
j=0 j=0 j=0

with ex = 1, hxy = 0 and fx = 0 due to the definition ofA (4.9) and®; (4.19). Taking
(4.15) and (4.18) into account we obtain

>
J

K—j
¢ = Z qiqK—j—i hj = — qixqK—j—i
i=0 i

1

K—j K—j
fi=- Z qixqK—j—ix — Z qixxqK—j—i
i=0 i=0

whereq, = {H, ¢} and we used the Newton formulae for a product of two sets. Canonically
conjugate to the coordinatgs momentap; can be derived from th&-matrix algebra (2.3)
[13]. Some first polynomials are equal to

K=0 e() =1 h(\) =0

K=1 e(V) = A+ 2q1 —h(\) = p1

K=2 el =2+2q1+ (2q2+q))

—h(A) = Ap2 + (p1 + p2q1)

K=3  e0) =242+ 7 2q2+ 42) + 2(q3 + q192)
—h(%) = A*ps + M(p2 + paq1) + (p1+ p2q1 + P3q2)-

Note that the kinetic part of the Hamiltonial (4.5) has a nondiagonal form in these
variables

I
o

(4.22)

(4.23)

K
T =3 piprsi-j (4.24)
j=1
Now we turn to the superintegrable systems. For the Taylor projectiths=( 0)
(4.11) the mapping (4.10) preserves the property of superintegrability if and oNlyJifK
according to (4.10) and (4.18). Hekeis a highest order of a pole of the entrgi) (4.18)
at infinity and N is a highest power in projection (4.11). It is simpler to prove by using
the definition of the corresponding Lax matrices (4.10), since in the definition oRthe
matrices (4.12) one uses the square of the funati@n. In fact, mapping (4.10) preserves
the nondynamicaR-matrix (3.16), (4.12) and property of superintegrability simultaneously.
By N > K one obtains the dynamic&-matrix (4.12), which has the higher poles\at oo
and the corresponding dynamical systems are no longer the superintegrable systems.
All these superintegrable systems are related to the special poiRtnaditrix and the
associated second Lax matriX (4.10) remains a constant in a spectral sense under the
mapping (4.10). All these superintegrable systems are related to the special stationary flows
of the KdV hierarchy (4.13) and genus of the associated spectral cu/&)9fdetermined
by the characteristic equation (3.23) is no more than the number of degrees of freedom.
As an example, we present here several superintegrable systems. The(&nthas
some simple poles &t = §; and a distinguished pole at= oo of order K

n 2

)= Pr)+ Y 2

j=K+1 A —d;
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where Pg (1) are polynomials given by (4.23). According to [25] the outer automorphism
of the space of infinite-dimensional representations of the Lie algéli2amay be applied

twice to the corresponding loop algebra. We can construct the Lax representations (4.10)
with one free parametef(1) and use the following realization of the underlying algebra
s1(2) with one free parametes

A= f. (4.25)

xp x? p? f
§3 = — F

> =z =5t
Thus, for the some first values & = N the corresponding superintegrable potentials in

(4.5) are

K=0 V=Z(qj?+ﬁ—§)
j=1 q;

K=1 V=4qf+z<q]?+ﬁ—’2>
j=2 4;
K=2 v =4qf—8q1q2+2<qf+’if2)
j=3 q;
K=3 V= —5qf+1zq%qz—4q§—8qlq3+z(q,?+ﬁ—;>.

j=4 J
If N = K, then the dress mapping (4.10) has thiet+ 1 arbitrary parameters given by
the functiong (1) = Z;V:Ooqikf. These parameters are related to the canonical shifts of
variablesg; — ¢; +«; and to the common rescalirig — a V in the presented potentials.
Additional integrals of motion may be constructed by the rule (4.4) from the multivariable
generating function, (A, ©) (4.8).

We may construct similar superintegrable systems with rational potentials by using a
general form of the entrg(X) (4.18) with the higher-order poles and applying a more
general Laurent projection (4.11). The presented method can be employed to construct
superintegrable systems on the other Riemannian spaces of constant curvature [15]. The
corresponding quantum systems may be obtained by canonical quantization [7, 25].

Taking into account th&-bracket (2.3) one can conclude that the enteigg and 1 (1)
could play roles similar to the standard creation and annihilation operators for harmonic
oscillator [14, 9]. By using a similar transformation of matriceé.) or L’(A) one can
obtain the symmetric representation of these matrices

e(A) =e(A,ay,an, ...,a,) fQ) = et(h) h()) =ht ().

Here a;, a;’ are the standard creation and annihilation operators. In this symmetric
representation of the Lax matrix the usual method of spectrum-generating algebras [4, 18]
is a part of the standard Bethe ansatz [14, 9]. It should be emphasized, that the algebraic
Bethe ansatz is a sufficiently universal procedure, which slightly depends on the particular
system in question. It allows us to interpret various concrete models as some representations
of a single generalized model, which is defined byRtsnatrix only.

As a third example, let us consider the Calogero—Moser systems. It is well known [20],
that both the Toda models and the Calogero—Moser models are obtained by Hamiltonian
reduction of the geodesic motion on the cotangent buftlé of a Lie groupG. For
the geodesic motion on symmetric spaces of zero curvature the canonical 2-form, the free
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Hamiltonian and equations of motion are equal to

= tr(dy A dx H=1tr(y?
t.v (y/\. ) 5 r(y®) (4.26)
X=y y=0.

For geodesic motion on symmetric spaces of positive or negative curvature these quantities
read

w = tr(x"1dy A x~dx) H = %tl’(yx_l)2

L R (4.27)
X =y y=yxy.

The Hamiltonians (4.26) and (4.27) have the following sets of integrals in the involution
I = tr(y") and I = tr(yx~Hk.
The additional integrals—'projections of angular momentum’ (1.5)—are equal to

L = tr(gp’~H tr(ph) — tr(p?) tr(gp* ). (4.28)

Hereq = x and p = y for the first equations of geodesic motion (4.26) ane- Inx or
g =Iny with p = yx~1 for the second equations of geodesic motion (4.27).
In the reduction process the Lax matrices of the reduced system are expressed in
terms ofx by a formula of the typel. = zxz!, wherez is some element irG [20].
For the geodesic motion (4.26) associated with the Calogero model with the rational and
trigonometric potentials, the Hamiltoniai (4.26) remains superintegrable and images of
integrals (4.28) are integrals of a reduced system [26]. In the quantum mechanics whole
polynomial algebra of the integrals of motion for the Calogero model is introduced in [16].
Let us show how the image of a superintegrable Hamiltonian (4.26) appears in the
R-matrix formalism associated with the Calogero model. For instance, consider the Euler—
Calogero—Moser system [26]. Introduce a set of dynamical variafglgs p_,-)}}il and

{f,-j}ff’jzl (fij = — f;i) together with the Poisson brackets

{pj,ax} = éji (4.29)
{fijs fat = 3itfix + ki fij + S fur + 81j fa)- (4.30)

In order to have a nondegenerate Poisson bracket it is assumed that the vafialbles
restricted to a symplectic submanifold of (4.30). The Hamiltonian and the Lax matrix for
the Euler—Calogero—Moser system [26] are given by

>

H=33 s+
2 j=1 ij—l i#j (Ql _q])z

1
L) = E pjejj + E ( — X) fijeij
i,j=1i#j qi qJ

with the correspondingR-matrix in the form [3]

=Y e -3 3 (o )ae
ralA, ) = —-5——= P €jj®¢€j— 5 T )i
)" /’L j=l 2 i,j=1 l;éj 511 % )“ + /J“

1 1 1
=55 ( + )ei,.@e,-,- (4.32)
=1i#j

qi—4q A—p

N 2

I\.)IH

(4.31)
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where (e;;)i; = 8ix6j;. In the reduction process thi8-matrix inherits the singular point
A = oo from the initial rationalR-matrix. The corresponding superintegrable Hamiltonian
(4.31) may be defined by (3.2) with= 1 - 1~*

H = &,[tr L*(W)] = 3Regi_o[r 1 - tr L2 )]

and the second Lax matrix is independent of spectral parameter

N
fi'
A=dtlrat, L] = Y —L—e;.
T2 4~ a)

The higher flows withp (1) = 1/k - A% in (3.2) are superintegrable as well [26].

5. Conclusions

We have seen that superintegrable systems connected to geodesic motion can be realized
as isospectral flows on coadjoint orbits of loop algebras in the frameworR-wfatrix
formalism. All these systems are associated with the special singular point of the classical
R-matrix.

Another classical superintegrable system with an arbitrary number of degrees of freedom
is the Kepler problem [1, 20]. In the proposed scheme we can consider a free geodesic
motion on the momentum sphere and use the stereographic projection with an appropriate
change of the time variable to study the Kepler problem [19]. However, this transformation
could violate theR-bracket (2.3) for the corresponding Lax matrix. It would be interesting to
construct the 2 2 Lax matrix for the Kepler problem and for the Kepler-like superintegrable
potentials listed in [8].
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