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Abstract. In this work we consider superintegrable systems in the classicalR-matrix method.
By using outer automorphisms of the loop algebras we construct new superintegrable systems
with rational potentials from geodesic motion onR2n.

1. Introduction

We shall consider classical integrable Hamiltonian systems on the coadjoint orbits of finite-
dimensional Lie algebras according to [1]. The dual spaceg∗ to the Lie algebrag is equipped
with the natural Lie–Poisson brackets specified by the condition that the Poisson bracket of
two linear functions ong∗ coincides with their Lie bracket ing. Let H be a function on
g∗, ∇H ∈ g the gradient ofH . In the spaceC∞(g∗) of smooth functions,H determines
the evolution with the associated Hamiltonian equation

ẋ = −(ad∗∇H ) · x x ∈ g
∗. (1.1)

If g is self-dual, i.e. has a nondegenerate inner product which allows us to identifyg∗ with
g and ad∗ with ad, then (1.1) takes on the usual form

ẋ = {H, x} = −(ad∇H ) · x x ∈ g. (1.2)

Henceforth we shall always identifyg∗ with g and ad∗ with ad.
FunctionI ∈ C∞(g) is called an integral of evolution with a HamiltonianH if

{H, I } = 0.

The evolution on a 2n-dimensional symplectic manifoldM with the HamiltonianH is called
completely integrable if there existsn functionsI1, . . . , In, which are independent integrals
in the involution for the HamiltonianH

{Ii, Ij } = 0 i, j 6 n. (1.3)

The functionsI1, . . . , In are independent, if forms dI1, . . . ,dIn are linearly independent on
the common level surfaces of these functions.

The evolution on a manifoldM, dimM = 2n with the HamiltonianH is called
superintegrable or degenerate, if there exists more thann independent integrals of motion
{Ij }kj=1, k > n andn of which are in the involution (1.3) [1, 17, 24]. For the superintegrable
systems all the integrals{Ij }kj=1, k > n are generators of the polynomial associative algebra,
whose defining relations are polynomials of certain order in generators (see [4, 5] for a
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collection of original papers). The main example of the superintegrable systems is a free
motion with the following Hamiltonian and equations of motion:

H =
n∑
j=1

p2
j q̇j = pj ṗj = 0 (1.4)

herepj , qj are canonical variables onM = R2n. Integrals of motion in the involution and
additional integrals of motion may be defined as

Ik = p2
k Jik = piqk − qipk. (1.5)

Other known classical superintegrable systems with arbitrary numbers of degrees of freedom
are the harmonic oscillator, the Kepler problem and the Calogero system [20]. Note that
the Kepler problem and the Calogero model may be obtained from the geodesic motion
(1.4) on spaces of constant curvature [20]. Other examples of superintegrable systems can
be constructed by using either purely algebraic techniques [1, 4, 5, 17] or the separation
of variables method atn = 2, 3 [24, 8, 5]. Some individual examples of superintegrable
systems are listed in [20] with the corresponding references.

Our aim is to show how superintegrable systems fit into a general pattern based on
the notion of the classicalR-matrix [10, 21]. The main advantage of such embedding is
that important structure elements for superintegrable systems, such as a Lax representation,
separation of variables [5] and spectrum-generating algebra (dynamical algebra) [4, 18] can
be systematically derived from the underlying standardR-matrix formalism, which is a
prerequisite for the study of the quantum case.

As an example, let us consider the degenerate geodesic motion (1.4)–(1.5). Introduce
an arbitrary set of points{δk}nk=1 and define some functionsp(λ), x(λ) with the following
property

p(λ)|λ=δk = pk x(λ)|λ=δk = xk.
The explicit form of the functions is not very important here. By using these functions the
involutive family of integralsIk (1.5) may be generated by a one-variable functionI (λ)

whereas the second set of integralsJik (1.5) can be recovered from the two-variableJ (λ, µ)
function only

Ik = I (λ)|λ=δk = p2(λ)|λ=δk
Jik = J (λ, µ)|λ=δiµ=δk = [p(λ)x(µ)− x(λ)p(µ)]λ=δiµ=δk .

Keeping this analogy in mind, to consider superintegrable systems on the loop algebras
L(g, λ), we introduce the multivariable universal enveloping algebras ofL(g, λ). In this
case the complete set of noncommutative integrals of motion is defined on the special
algebraic surfaces.

We propose a dressing procedure allowing us to construct the new superintegrable
systems starting from known ones. As a natural initial point we shall select a geodesic
motion (1.4) on the Riemannian spaces of constant curvature. To construct the new
Lax equations associated with a potential superintegrable motion we apply the outer
automorphism of the underlying algebrag [25] directly to the Lax equations associated
with a geodesic motion.

The paper is organized as follows. In section 2 we briefly recall the notion of the
classicalR-matrix method. In section 3 superintegrable systems are constructed inR-matrix
formalism, while section 4 contains some examples.
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2. Method of the classicalR-matrix

A systematic way for realizing an integrable Hamiltonian system on coadjoint orbits of the
Lie algebras is provided by theR-matrix method [10, 21].

Recall that the classicalR-matrix on a Lie algebrag is a linear operatorR ∈ End(g)
such that the bracket ong

[X, Y ]R = 1
2([RX, Y ] + [X,RY ]) X, Y ∈ g (2.1)

satisfies the Jacobi identity [21, 22]. In this case there are two structures of a Lie algebra in
the linear spaceg∗ given by the original Lie bracket and theR-bracket (2.1), respectively.
Definition of the second algebraic structure associated withR-brackets is motivated by the
following result. LetI(g) be the ring of Casimir functions ong∗. Functionsτj ∈ I(g)

are invariants with respect to the original Lie structure and they are in the involution with
respect to theR-bracket ong∗. Namely, if τ is an invariant of the coadjoint action ofg,
the associated Hamiltonian equation (1.1) ong∗ is equal to

dL

dt
= −ad∗A · L A = 1

2R(dτ(L)) L ∈ g
∗. (2.2)

If g is self-dual, so that ad∗ = ad, then equation (2.2) takes on the usual Lax form [21]

dL

dt
= [L,A]

and theR-bracket (2.1) can be rewritten in tensor form [10, 21, 22].
It is obvious, that for anyR-matrix in (2.2) all the Casimir functionsτj ong∗ give rise to

integrals of motion in the involution [10, 21]. Our aim is to find the origin of an appearance
of the special superintegrable Hamiltonians and their additional integrals of motion in this
method.

Finite-dimensional, simple Lie algebrasg lead to generalized Toda lattices and other
mechanical systems that may be integrated in elementary functions [10, 21, 22]. This
excludes the most interesting examples of integrable systems which come from analytical
mechanics, since their solutions are Abelian functions of the time variable. In order to
obtain dynamical systems of this type, one has to consider the class of the so-called affine
Lie algebras, or loop algebrasL(g, λ) [21]. Recall, that loop algebraL(g, λ) can be realized
as an algebra of the Laurent polynomials with coefficients ing

L(g, λ) = g[λ, λ−1] =
{
x(λ) =

∑
i

xλi, x ∈ g

}
and with the commutator [xλi, yλj ] = [x, y]λi+j .

Let L(λ) ∈ L(g, λ) be a generic point in the loop algebra, which is regarded as a Lax
matrix. The tensor form [10, 21, 22] of the correspondingR-bracket is given by

{L1(λ), L2(µ)} = [r12(λ, µ), L1(λ)] − [r21(λ, µ), L2(µ)]

r21(λ, µ) = P12r12(λ, µ)P12
(2.3)

whereP12 is a permutation operator inL(g, λ) ⊗ L(g, µ) and rij (λ, µ) are kernels of the
corresponding operatorsR andR∗ in (2.1) [22]. Note that theR-matrix scheme is extended
easily to the twisted subalgebras of loop algebraL(g, λ) and the corresponding matricesr12

have rational, trigonometric and elliptic dependencies on spectral parameters.
According to an algebra homomorphism [12]

U(L(g, λ))→ C[λ, λ−1] ⊗ U(g)
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we can construct the one-variable universal enveloping algebraU(L(g, λ). In this case the
Casimir functions on the loop algebras can be recovered by the ad-invariantsτj (x) in I(g)

τj,φ = Res|λ=0φ(λ) · τj (x(λ)) τj (x) ∈ I(g) φ(λ) ∈ C[λ, λ−1] (2.4)

whereφ(λ) is some rational function of the spectral parameterλ with numerical values
[21].

It is obvious, that an application of the ad-invariant functionsτj is a basic tool in the
R-matrix method [10, 21] and, therefore, we consider these functions in greater detail to
assume the standard identification of the dual spaces.

To begin with let us recall some necessary facts from the notion of a universal enveloping
algebra [6]. Letg be a Lie algebra andT (g) be the tensor algebra of the vector spaceg

T = T 0⊕ T 1⊕ T 2 . . . T n = g⊗ g⊗ · · · ⊗ g n times. (2.5)

If J is the two-sided ideal ofT generated by the tensors

x ⊗ y − y ⊗ x − [x, y] x, y ∈ g

then the associative algebraT/J is called the universal enveloping algebra, which is usually
denoted byU(g).

Let m > 0 be an integer. The vector subspace ofU(g) generated by the products
x1x2 . . . xj , wherex1, x2, . . . , xj ∈ g andj 6 m is denoted byUm(g). We have

U0(g) = C · 1 U1(g) = C · 1⊕ g Ui(g)Uj (g) ⊂ Ui+j (g).
This sequence is the canonical filtration ofU(g).

According to the Birkhoff–Witt theoremT (g) = J ⊕ S(g) and algebraU(g) is
isomorphic to the symmetric algebraS(g) as a vector space. Ifx1, x2, . . . , xm ∈ g, then

w(x1x2 . . . xm) = 1

m!

∑
π

Pπx1x2 . . . xm = 1

m!

∑
π

xπ(1)xπ(2) . . . xπ(m) (2.6)

herePπ means the permutation operator corresponding to a certain Young diagramπ [6].
The mapw (2.6) is a bijection ofS(g) ontoU(g), which is called the symmetrization.

The Casimir functions or the ad-invariant functions ong form a centreI(g) of U(g).
The symmetrization mapping (2.6) allows us to constructI(g) by using the ad-invariants
of commutative algebraS(g) [6].

Studying the superintegrable systems we have to introduce the multivariable tensor
algebra

T (g, λ, µ, . . .) = T 0⊕ T 1⊕ T 2 . . .

T m(g, λ, µ, . . . , ν) = L(g, λ)⊗ L(g, µ)⊗ · · · ⊗ L(g, ν) m times
(2.7)

and canonical filtration of the corresponding enveloping algebraU(g, λ, µ, . . .) generated
by subspacesUm(g, λ, µ, . . . , ν). These vector subspaces are produced by subspacesUm(g)

xi1i2...ik (λ, µ, . . . , ν) =
∑

j1,j2,...,jk

xi1i2...ik λ
j1µj2 . . . νjk k 6 m xi1i2...ik ∈ Um(g).

In just the same way as for a Lie algebrag [6], one defines the canonical mapping of the
loop algebraL(g, λ) into U(g, λ, µ, . . .). Any elementL(λ) of L(g, λ) can be embedded
into Um(g, λ, µ, . . . , ν)

Lj (λj ) = id1⊗ · · · ⊗ idj−1⊗ L(λj )⊗ idj+1⊗ · · · ⊗ idm ∈ Um(g, λ, µ, . . . , ν) (2.8)
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and

L
(k)
j1j2...jk

(λ1, λ2, . . . , λk) =
k∏
n=1

Ljn(λjn) 16 k 6 m (2.9)

L(m)(λ, µ, . . . , ν) = L(λ)⊗ L(µ)⊗ · · · ⊗ L(ν) m times. (2.10)

Hereλ1 = λ, λ2 = µ, . . . λm = ν.
The Poisson brackets between the elementsL

(k)
j1j2...jk

(λ, µ, . . . , ν) (2.9) can be written in
the ‘generalized’R-matrix form. For instance

{L12(λ, µ), L3(ν)} = [r13(λ, ν)+ r23(µ, ν), L12(λ, µ)] − [r31(λ, ν), L23(µ, ν)]

−[r23(µ, ν), L13(λ, ν)] (2.11)

whererij (λi, λj ) areR-matrices, which act nontrivially in the corresponding subspaces of
Tm(g, λ, µ, . . . , ν) (2.7) and

{L12(λ, µ), L34(ν, η)} = [r(1)(λ, µ, ν, η), L1(λ)] + [r(2)(λ, µ, ν, η), L2(µ)]

−[r(3)(λ, µ, ν, η), L3(ν)] − [r(4)(λ, µ, ν, η), L4(η)] (2.12)

where

r(1)(λ, µ, ν, η) = r̃(λ, µ, ν, η)+ P34r̃(λ, µ, η, ν)P34

r(2)(λ, µ, ν, η) = P12r
(1)(µ, λ, ν, η)P12

r(3)(λ, µ, ν, η) = P13[r̃(λ, µ, ν, η)+ P12r̃(µ, λ, ν, η)P12]P13

r(4)(λ, µ, ν, η) = P34r
(3)(λ, µ, η, ν)P34

r̃(λ, µ, ν, η) = r13(λ, ν)L24(µ, η).

Here Pij are operators of pairwise permutations in the tensor algebraTm(g, λ, µ, . . . , ν)

(2.7).
Integrals of motion in the involution are completely defined by the ad-invariants (2.4)

of L(g, λ) and by the linearR-bracket (2.3) [10, 21]. Description of the superintegrable
systems requires us to consider ad-invariants of the multivariable algebraU(g, λ, µ, . . .),
more complicated embeddingL(k)j1j2...jk

(λ, µ, . . . , ν) (2.9) and (2.10) and analogue of the
symmetrization mapping.

Theorem 1.If the second Lax matrixA(λ) is independent on spectral parameterλ, then the
following elements of the multivariable algebraU(g, λ, µ, . . .)

L(k,π)(λ, µ, . . . , ν) = PπL(k)12...k(λ1, λ2, . . . , λk) = L(k)π(1)π(2)...π(k)(λπ(1), λπ(2), . . . , λπ(k))
(2.13)

give rise to integrals of motion. HerePπ means the permutation operator corresponding to
a certain Young diagramπ .

SinceA(λ) is independent onλ we have that the equation of motion for the elements
L(k,π)(λ, µ, . . . , ν) has a Lax form

d

dt
L(k,π)(λ, µ . . . , ν) = [L(k,π)A(k)]

A(k) ≡
k∑

j=1

Aj(λj ) =
k∑

j=1

Aπ(j)(λπ(j)).

Of course, to construct the degenerate systems we have to prove that one can obtain
the sufficient number of the functionally independent integrals of motion from the elements
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(2.13). We have to solve this problem for any given superintegrable system on the loop
algebras. It may be quite difficult to decide which Lie algebra is associated with a given
mechanical system. As usual, the way around this difficulty is to reverse the reasoning and
to study all possible dynamical systems associated with a given Lie algebra. Therefore, in
the next section, we consider degenerate systems associated with thesl(n) algebra.

3. Superintegrable systems onsl(n)

As an application to the integrable systems let us suppose, for concreteness, that every
elementL(λ) of the loop algebraL(g, λ) be a matrix in some fixed matrix representation
of the algebrag and the representation space be an auxiliary space [10]. Now we study an
algebrag = sl(n,C) in the fundamental representation and begin with the standard rational
R-matrix [10, 21]. In this case let the elementL(λ) of L(g, λ) be an × n matrix in the
auxiliary spaceCn and the matrix elements ofL(λ) be some rational functions of spectral
parameterλ.

The basis of invariant functions inI(sl(n,C)) could be selected as

τk(L(λ)) = 1

k
trLk(λ) k 6 n. (3.1)

The family of the integrals of motion in the involution is generated byτk(L(λ)) [10, 21]

Ii,k(L) = 8(i)
λ (τk(λ)) (3.2)

where8(i)
λ are various linear functionals defining a set of the functionally independent

integrals of evolution. For instance,

8
(i)
λ (z) = Res|λ=0(φi(λ) · z) φi(λ) ∈ C[λ, λ−1] (3.3)

hereφi(λ) are some functions of spectral parameter with numerical values. In this case
integralsIi,k are at mostk-order polynomials in generatorsg andIi,k ∈ Uk(g).

The Lax equation (2.2) associated with the HamiltonianIi,k (3.2) is equal to

dL(µ)

dt
= {Ii,k, L(µ)} = [L(µ),Ai,k(µ)] (3.4)

where the second Lax matrixAi,k has the form

Ai,k(µ) = 8(i)
λ tr1(r21(λ, µ)L

k−1
1 (λ)) (3.5)

here trace tr1 is taken over the first auxiliary space.
Let the representation space of the subalgebraUm(g, λ, µ, . . . , ν) be an extended

auxiliary space

V (m) = ⊗mi=1Vi = V1⊗ V2⊗ · · · ⊗ Vm Vi ' Cn. (3.6)

In this case the elementsLj(λj ) (2.8) andL(k)j1j2...jk
(λ, µ, . . . , ν) (2.9) belonging to the algebra

Um(g, λ, µ, . . . , ν) are thenm × nm matrices inV (m)

Lj (λj ) = I1⊗ · · · Ij−1⊗ L(λj )⊗ Ij+1⊗ · · · ⊗ Im

L(k)(λ, µ, . . . , ν) =
m∏
j=1

Lj(λj ) λ1 = λ λ2 = µ, . . . , λm = ν (3.7)

hereI means an × n unit matrix and the subscriptj shows in which of the spacesVj in
the whole spaceV (m) the matrixL(λ) acts nontrivially.
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The equation of evolution for the matrixL(m) has a commutator Lax form

d

dt
L(m)(λ, µ . . . , ν) = [L(m)(λ, µ . . . , ν), A(m)(λ, µ . . . , ν)] (3.8)

with the following second matrix

A(m)(λ, µ . . . , ν) =
m∑
j=1

Aj(λj ) λ1 = λ λ2 = µ, . . . , λm = ν (3.9)

which is a sum of the matricesAj(λj ) of the type (3.7) acting in the whole spacesV (m).
The spectral invariants of the matricesL(m) give rise to a family of the integrals of motion
in the involution as before.

Let us introduce matrices

L(m,π)(λ, µ, . . . , ν) = PπL(m)(λ, µ, . . . , ν) = PπL1(λ)L2(µ) . . . Lm(ν). (3.10)

Here the permutation matrixPπ in V (m) is determined by

Pπ(x1⊗ x2⊗ · · · ⊗ xm) = xπ(1) ⊗ xπ(2) ⊗ · · · ⊗ xπ(m) (3.11)

for any set of vectorsxj in Cn or

Pπ · A1B2 . . . Dm = Aπ(1)Bπ(2) . . . Dπ(m) · Pπ P 2
π = I (3.12)

for anyn×n matricesA,B, . . . ,D embedding inV (m) according to (3.7). The permutation
of subscripts in (3.11) and (3.12) is defined by a certain Young diagramπ [14].

For all the integrable systems the equations of evolution for the matricesL(m,π) are
given by

d

dt
L(m,π)(λ, µ . . . , ν) = L(m,π)A(m)(λ, µ . . . , ν)− A(m,π)(λ, µ . . . , ν)L(m,π). (3.13)

where matrixA(m) is given by (3.9) and the second matrixA(m,π) differs from it by the
permutation of spectral parameters in accordance with the Young diagramπ

A(m,π)(λ, µ . . . , ν) = PπA(m)(λ, µ . . . , ν)P−1
π

=
m∑
j=1

Aj(λπ(j)) λ1 = λ λ2 = µ, . . . , λm = ν.

The right-hand side of (3.13) is a matrix commutator if and only if

A(m)(λ, µ . . . , ν) = A(m,π)(λ, µ . . . , ν)⇐⇒ A(λj ) = A(λπ(j)). (3.14)

It is easy to prove, this equation (3.14) is valid if eitherA(λ) = A is independent on spectral
parameters or all the spectral parameters at (3.14) are equalλ = µ = · · · = ν.

Assuming (3.14) holds we can define new multivariable generating functions of the
integrals of motion

sπm(λ, µ . . . , ν) =
1

m
tr(m) L

(m,π)(λ, µ . . . , ν)

d

dt
sπm(λ, µ . . . , ν) = 0.

(3.15)

The trace tr(m) in (3.15) is taken over the whole spaceV (m).
Now, from the theorem 1 one obtains the following.

Corollary 1. Superintegrable Hamiltonian systems on the loop algebraL(sl(n), λ) relate to
a special point of the classicalR-matrix.
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It is essential that condition (3.14) is fulfilled for the independent on spectral parameter
matrix A in (3.4)

Ai,m = 8(i)
λ tr1(r21(λ, µ)L

m−1
1 (λ)) = constant6= 0.

We observe that matrixAi,m depends on spectral parameterµ via R-matrix only. Hence,
the constant in the spectral sense matrixA ≡ A(µ) in theorem 1 and the corresponding
special degenerate Hamiltonian are related to the singular points of theR-matrix.

As an example, the standard rationalR-matrix for algebrasl(n,C) is equal to

r12(λ, µ) = P12

λ− µ. (3.16)

We can choose the special linear functional in (3.5) as residue at infinity

8λ(z) = −Res|λ=∞(φ(λ) · z) (3.17)

such that the second matrix

A(µ) = − tr1

[
P · lim

λ→∞
φ(λ)Lm−1

1 (λ)

λ− µ

]
(3.18)

is independent of spectral parameterµ. Moreover, if some invariant polynomialτk(λ) (3.1)
has a nontrivial residue atλ = ∞ on the phase space

H = −Res|λ=∞φ(λ)τk(λ) (3.19)

which is chosen as a Hamiltonian, the corresponding Lax matrixA (3.18) does not equal
zero. In this case the singular pointλ = ∞ of R-matrix (3.16) is associated with the
superintegrable HamiltonianH (3.19) and with the new multivariable generating functions
of the integrals of motion (3.15)

{H, sπm(λ, µ, . . . , ν)} = 0. (3.20)

For the algebrasl(n) we lose the property of involution for these new multivariable functions
and for the corresponding integrals of motion

{sπmm (λ1, λ2, . . . , λm), s
πk
k (µ1, µ2, . . . , µk)} 6= 0. (3.21)

These brackets are completely recovered by the polynomialR-brackets for the matrices
L(m,π), as an example see (2.11) and (2.12).

Corollary 2. Complete set of integrals is determined by the generalized spectral surfaces

C(z, λ, µ . . . ν) = det(zI + L(m,π)(λ, µ . . . ν)) = 0 m 6 n ∀π. (3.22)

At λ1 = λ2 = · · · = λm cross sections of these surfaces are equivalent to a usual spectral
curve ofL(λ) determined by the characteristic equation

C(z, λ) = det(zI + L(λ)) = 0 (3.23)

which gives rise to integrals in the involution only.

The first proposition follows from the Lax form of the equation of motion. In additional,
for any HamiltoniansIi,k (3.2) condition (3.14) is always fulfilled for the equivalent spectral
parameters

λ = λj = λπ(j) j = 1, . . . , n ∀π (3.24)

that corresponds to a choice of another basis of ad-invariant functions in the centreI(g)

[14] by using the outer powers of matrixL(λ)

sm(λ) = 1

m
tr(m) L

(m,π)(λ, λ, . . . , λ). (3.25)
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Symmetric functionssm(λ) can be expressed in the symmetric functionsτm(λ) (3.1)
according to Newton’s formulae [14] and functionssm(λ) give rise to integrals in the
involution.

Next let us consider BelavinR-matrices [2], which are meromorphic solutions of the
classical Yang–Baxter equation such that

r12(λ, µ) = r12(λ− µ) = −r21(µ− λ)
r12(λ− µ) = P12

λ− µ +O(1) P12x ⊗ y = y ⊗ x
(3.26)

that defines the expansion ofrij in the neighbourhood of the singularity atλ = µ. Here
rij are rational, trigonometric or elliptic matrix functions on spectral parameters [2, 10, 21].
These matrices have a pole atλ = µ with a permutation operatorP12 (3.26) as a residue.
In addition, the rational functionr(λ − µ) of two variablesλ andµ has the special point
at λ = ∞ in its domain of definition. In this point functionr(λ − µ) has a distinct-
from-zero residue, which is independent of the second spectral parameterµ. The generally
accepted ellipticR-matrices [2, 10, 21] do not have such special points in their domains.
Nevertheless, a construction similar to the rational case can be proposed as well.

The Lax equation (2.2) andR-bracket (2.3) are covariant under a similar transformation

L→ U−1LU A→ U−1AU rij → U−1
1 U−1

2 rijU1U2 (3.27)

whereU is a constant matrix on a phase space. If the matrixU depends on a spectral
parameter, we can use similar transformations to construct additional poles of theR-matrix.
In this case the multivariable generating functionssπm(λ, µ, . . . , ν) are changed

sπm(λ, µ, . . . , ν)→ sπm(λ, µ, . . . , ν) =
1

m
tr(m)[ZπL(λ)⊗ L(µ) . . .⊗ L(ν)] (3.28)

here projectorPπ in (3.20) is substituted by a matrix

Zπ = [U(λ)⊗ U(µ) . . .⊗ U(ν)]−1 · Pπ · U(λ)⊗ U(µ) . . .⊗ U(ν) (3.29)

depending on spectral parameters. For the equivalent spectral-parameter functionssm(λ)

are covariant under similar transformations.
As an example, we study an ellipticR-matrix on the twisted-loop algebraL(sl(2), σ ).

Let us consider the periodic lattice0 = 2KZ + 2iK ′Z, whereK andK ′ are the standard
elliptic integrals of the modulek ∈ [0, 1] and introduce the corresponding elliptic theta
function2ij (λ, k) as in [23]. In this notation the standard ellipticR-matrix is

r(λ− µ) =
3∑
k=1

wk(λ− µ) · σk ⊗ σk (3.30)

whereσk are Pauli matrices and

w1(λ) = 2′11(0, k)210(λ, k)

210(0, k)211(λ, k)
w2(λ) = 2′11(0, k)200(λ, k)

200(0, k)211(λ, k)

w3(λ) = 2′11(0, k)201(λ, k)

201(0, k)211(λ, k)
.

The functionr(λ− µ) (3.30) is meromorphic inC and has simple poles atλ = µ mod0.
According to [23] we introduce the similarR-matrix

ρ(λ, µ) = U−1
12 (λ, µ, λ∞)r(λ− µ)U12(λ, µ, λ∞)

U12(λ, µ, λ∞) = U1(λ− λ∞ +K)U2(µ− λ∞ +K)
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with the following matrixU(λ)

U(λ) =
(
201 200

−200 −201

)
(ξ, k̃) λ = 2ξ

1+ k k̃ = 2
√
k

1+ k (3.31)

hereλ∞ is an arbitrary point. ThisR-matrix ρ(λ, µ) has been introduced for the purpose
of separating the variables in [23]. More explicitly

ρ(λ, µ) =
3∑

j=1

wj(λ− µ, k) · σj ⊗ σj + [w3(µ− λ∞, k)− w3(λ− λ∞, k)+ w0] · σ3⊗ σ3

+iw(µ− λ∞, k) · σ3⊗ σ2− iw(λ− λ∞, k) · σ2⊗ σ3

w(λ, k) ≡ w1(λ, k) = w2(λ, k) = 2′11

210

210(λ, k)

211(λ, k)
w3(λ) = 2′11(λ, k)

211(λ, k)

(3.32)

herew0 is a some constant [23]. Let the poles ofρ(λ, µ) by the first spectral parameterλ
be at the points

λ = µ mod0 Res|λ=µρ(λ, µ) = P
λ = λ∞ mod0 Res|λ=λ∞ρ(λ, µ) = Z = (σ3+ σ− + σ+)⊗ σ3.

So, if L(λ) is an orbit of the newR-matrix ρ(λ, µ), such that the second matrix

A = tr1

[
Z · lim

λ→λ∞
φ(λ)L(λ)

]
6= 0

is a nontrivial constant in a spectral sense, the special Hamiltonian

H = Res|λ=λ∞ tr[φ(λ)L2(λ)]

is superintegrable.
In the next section we present some nontrivial examples ofR-matrix orbits associated

with superintegrable systems for the rationalR-matrix.

4. Examples

The above construction of superintegrable systems can be applied to the Gaudin magnet,
which was introduced in quantum mechanics [11]. The classical version turned out to be
a useful example for developing a general group-theoretic approach to integrable system
[10, 21].

We shall consider the rational Gaudin magnet related tosl(N) algebra. The model in
question is defined on theM coadjoint orbits ofsl(N)∗ in variablesX(m)ij , (m = 1, . . . ,M,
i, j = 1, . . . , N). The corresponding Lie–Poisson brackets are

{X(m)
ij , X

(n)
kl } = δmn(X(m)il δjk −X(m)kj δil). (4.1)

The coadjoint orbits are fixed by valuest (m)k of the ad-invariant functions onsl(N)

t
(m)
k = k−1 tr(X(m))k ∈ C. (4.2)

The Poisson bracket (4.1) is nondegenerate on the manifold (4.2) having dimension
n = MN(N − 1)/2 for the case of generic orbits (allt (m)i are distinct). In what follows we
assume that the orbit is generic.

Fixing some elementZ ∈ sl(N) as a residue at infinity we consider the special Lax
matrix L(λ) ∈ L(⊕sl(N))

L(λ) = Z +
M∑
m=1

X(m)

λ− δm (4.3)
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where{δm} is a set ofM arbitrary constants. MatrixL(λ) obeys the linearR-bracket (2.3)
[10, 21] with the rationalR-matrix (3.16).

The basis elementsτk (3.1) are meromorphic functions ofλ

τk(λ) = ξk +
M∑
m=1

k∑
j=1

I
j

m,k

(λ− δm)j

hereξk = k−1 trZk and I km,k = t (m)k are fixed constants. Other residuesI jm,k form a family
of n = MN(N − 1)/2 independent integrals in the involution. It is immediately seen that
the special Hamiltonians in this family

H(k) = −Res|λ=∞τk(λ) =
M∑
m=1

Res|λ=δmτk(λ)

are nondegenerate functions on the generic coadjoint orbits ofsl(N)∗ and they correspond
to the constant in a spectral sense second Lax matrix (3.5)

A(k) = Zk−1.

So, HamiltoniansH(k) are superintegrable Hamiltonians and a complete set of the integrals
of motion can be generated by (3.20). As an example, additional independent integrals of
evolution may be constructed from the quantities

Iπm,k = Resks
π
m(λ, µ, . . . , ν). (4.4)

Here Resk means the residue of some fixed orderk = (k1, k2, . . . , km), kj 6 Kj at the points

λ = δj1 µ = δj2, . . . , ν = δjm
which belong to the divisor of the poles of a multivariable functionsπm(λ, µ, . . . , ν)

D = {(δj ,Kj ), j = 1, . . . ,M, (∞, 1)}.
As a second example, let us consider superintegrable natural systems onR2n with the

following Hamiltonians:

H = T + V =
∑

aijpipj + V (q1, . . . , qn) aij ∈ R (4.5)

where {pj , qj }nj=1 are canonical variables. Several systems with the superintegrable
Hamiltonians of the form (4.5) may be described by using 2× 2 Lax matrix in the form

L(λ) =
(
h e

f −h
)
(λ) (4.6)

which satisfies the linearR-matrix algebra (2.3) with some matrixrij . Matrix L(λ) has a
single invariant polynomial (3.25)

s2(λ) = 1
2 tr[PL(λ)⊗ L(λ)] = detL(λ) = − 1

2 trL2(λ) = − 1
2τ2(λ) (4.7)

and one second-order complementary polynomial (3.20)

s2(λ, µ) = 1
2 tr[PL(λ)⊗ L(µ)] = h(λ)h(µ)+ e(λ)f (µ)+ f (λ)e(µ)

2
. (4.8)

These polynomials will be the generating functions of the integrals of motion for the our
superintegrable Hamiltonians (cf (1.5)).

If the potentialV in (4.5) is equal to zeroV (q1, . . . , qn) = 0 we find geodesic motion,
which is superintegrable. It is known [15], the Lax representation (4.6) associated with
geodesic motion may be regarded as a generic point of the loop algebraLD(sl(2)) in a
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fundamental representation after an appropriate completion ofL(sl(2)) associated with an
arbitrary fixed divisor of poles [21]

D = {(δj , lj ), j = 1, . . . ,M, (∞,K)}.
Namely, according to [13], let us introduce functione(λ) on the spectral parameterλ and on
the flat coordinatesqj with its time derivativeex(λ) = {H, e(λ)}, whereH is a Hamiltonian
of the geodesic motion (4.5) and the dependence ofe(λ) on the coordinatesqj is defined
implicitly. Nevertheless, in the Lax equation

Lx(λ) = {H,L} = [L,A].

We define matricesL andA by

L(λ) =
( −ex/2 e

−exx/2 ex/2

)
(λ) A(λ) =

(
0 1
0 0

)
. (4.9)

Below we prove that this Lax equation is associated with geodesic motion and the
corresponding HamiltonianH (by V = 0 at (4.5)) is equal to the highest residue at the
distinguished Weierstrass point on the spectral curve ofL(λ) (3.23) at infinityλ = ∞.

To construct the Lax representation for a potential motion we can use the outer
automorphism of the space of infinite-dimensional representations of underlying Lie algebra
sl(2) proposed in [25].

Applying this automorphism of the algebrasl(2) directly to the Lax representationL(λ)
(4.6) onL(sl(2)) we obtain a family of the new Lax pairs

L′(λ) = L(λ)− σ− · [φ(λ)e−1(λ)]MN

A′(λ) = A− σ− · [φ(λ)e−2(λ)]MN =
(

0 1
uMN(λ) 0

)
.

(4.10)

The corresponding HamiltonianH ′ at the Lax equation (3.4)) remains to equal residue of
the same order as for an initial geodesic motion, i.e. linear functional8λ (3.2) is invariant
under the mapping (4.10).

Functionφ(λ) at (4.10) is an arbitrary function on spectral parameter and [z]MN means
a restriction ofz onto the ad∗R-invariant Poisson subspace of the initialR-bracket [13, 25].
For the rationalR-matrix (3.16) we can use the linear combinations of the following Laurent
projections

[z]MN =
[ +∞∑
k=−∞

zkλ
k

]
MN

≡
N∑

k=−M
zkλ

k (4.11)

or the Taylor projections byM = 0.
Mapping (4.10) plays the role of a dressing procedure allowing us to construct the

Lax matricesL′MN(λ) for an infinite set of new integrable systems starting from the single
known Lax matrixL(λ) associated with one integrable model. The Lax matrixL′(λ) (4.10)
obeys the linearR-bracket (2.3), where constantrij -matrices are substituted byr ′ij -matrices
depending on the dynamical variables

r12(λ, µ)→ r ′12 = r12− ([φ(λ)e
−2(λ)]MN − [φ(µ)e−2(µ)]MN)

(λ− µ) · σ− ⊗ σ−. (4.12)

Associated with the matricesL(λ) (4.9) andL′(λ) (4.10) generating functionss2(λ) and
s ′2(λ) (4.7) obey the following equations of motion

ds2(λ)

dt
= 0⇒ ∂3

x e(λ) = exxx = 0

ds ′2(λ)
dt
= 0⇒ [ 1

4∂
3
x + uMN(λ)∂x + 1

2uMN,x(λ)] · e(λ) = 0.
(4.13)



Superintegrable systems on the loop algebras 2087

The integrated form of these relations (4.13) are

s2(λ) = e · exx
2
− e

2
x

4

s ′2(λ) =
e · exx

2
− e

2
x

4
+ e2 · uMN(λ).

(4.14)

A simple substitution for the entries of matrixL(λ)

e(λ) = B2 h(λ) = −ex/2= −BBx
f (λ) = −exx/2= −B2

x − BBxx
(4.15)

turns determinants (4.14) into the form

s2(λ) = B3Bxx s ′2(λ) = B3Bxx + B4

[
φ(λ)

B4

]
MN

(4.16)

if we use an explicit formula for the potentialuMN(λ). These equations have the form of
Newton’s equations for the functionB

Bxx = s2(λ)B−3

Bxx = s ′2(λ)B−3− B
[
f (λ)

B4

]
MN

.
(4.17)

To expand functionB(λ) at a Laurent set, for example

B =
N∑
j=0

qN−jλj

it is easy to prove that the coefficientsqj obey Newton’s equation of motion with a
Hamiltonian of the form (4.5). Here we reinterpret the coefficients ofs2(λ) and s ′2(λ)
in (4.17) not as functions on the phase space, but rather as integration constants. These
expansions may be considered as an appropriate parametrization of the functione(λ) in flat
coordinatesqj . Note, in variablesqj mapping (4.10) affects only the potential (q-dependent)
part of the integrals of motionIk. The kinetic (momentum dependent) part ofIk remains
unchanged. So, the dress mapping (4.10) allows us to change from a free motion onR2n

to a potential motion onR2n.
Namely, the functione(λ) is given by

e(λ) =
K∑
i=1

eiλ
i +

M∑
j=1

lj∑
k=1

ejk

(λ− δj )k (4.18)

and the HamiltonianH associated with the Lax representation (4.9) or (4.10) is equal to a
highest residue of detL(λ) at infinity λ = ∞

8λ(z) = Res|λ=∞(λ−Kz). (4.19)

Recall, that this functional defines Hamiltonians (3.2) for a geodesic motion and for all
the potential motions simultaneously. Then the residuesei and ejk are easily restored in
variables{qj }nj=1 by using the functionB. As a first example, in the simple poles atλ = δj ,
function e(λ) = B2 (4.18) has the following residuesej1 = q2

j . Parametrization of the
residues in the higher-order poles is discussed in [13]. As a second example, we consider
the polynomial part ofe(λ) corresponding to a pole at infinity. Let

B(λ) =
K∑
j=0

qK−jλj (4.20)
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with q0 = 1 and

e(λ) =
K∑
j=0

ejλ
j h(λ) =

K∑
j=0

hjλ
j f (λ) =

K∑
j=0

fjλ
j (4.21)

with eK = 1, hK = 0 andfK = 0 due to the definition ofA (4.9) and8λ (4.19). Taking
(4.15) and (4.18) into account we obtain

ej =
K−j∑
i=0

qiqK−j−i hj = −
K−j∑
i=0

qi,xqK−j−i

fj = −
K−j∑
i=0

qi,xqK−j−i,x −
K−j∑
i=0

qi,xxqK−j−i

(4.22)

whereqx = {H, q} and we used the Newton formulae for a product of two sets. Canonically
conjugate to the coordinatesqj momentapj can be derived from theR-matrix algebra (2.3)
[13]. Some first polynomials are equal to

K = 0 e(λ) = 1 h(λ) = 0

K = 1 e(λ) = λ+ 2q1 − h(λ) = p1

K = 2 e(λ) = λ2+ 2λq1+ (2q2+ q2
1)

−h(λ) = λp2+ (p1+ p2q1)

K = 3 e(λ) = λ3+ 2λ2q1+ λ(2q2+ q2
1)+ 2(q3+ q1q2)

−h(λ) = λ2p3+ λ(p2+ p3q1)+ (p1+ p2q1+ p3q2).

(4.23)

Note that the kinetic part of the HamiltonianH (4.5) has a nondiagonal form in these
variables

T =
K∑
j=1

pjpK+1−j . (4.24)

Now we turn to the superintegrable systems. For the Taylor projections (M = 0)
(4.11) the mapping (4.10) preserves the property of superintegrability if and only ifN 6 K
according to (4.10) and (4.18). HereK is a highest order of a pole of the entrye(λ) (4.18)
at infinity andN is a highest power in projection (4.11). It is simpler to prove by using
the definition of the corresponding Lax matrices (4.10), since in the definition of theR-
matrices (4.12) one uses the square of the functione(λ). In fact, mapping (4.10) preserves
the nondynamicalR-matrix (3.16), (4.12) and property of superintegrability simultaneously.
By N > K one obtains the dynamicalR-matrix (4.12), which has the higher poles atλ = ∞
and the corresponding dynamical systems are no longer the superintegrable systems.

All these superintegrable systems are related to the special point ofR-matrix and the
associated second Lax matrixA′ (4.10) remains a constant in a spectral sense under the
mapping (4.10). All these superintegrable systems are related to the special stationary flows
of the KdV hierarchy (4.13) and genus of the associated spectral curve ofL′(λ) determined
by the characteristic equation (3.23) is no more than the number of degrees of freedom.

As an example, we present here several superintegrable systems. The entrye(λ) has
some simple poles atλ = δj and a distinguished pole atλ = ∞ of orderK

e(λ) = PK(λ)+
n∑

j=K+1

q2
j

λ− δj
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wherePK(λ) are polynomials given by (4.23). According to [25] the outer automorphism
of the space of infinite-dimensional representations of the Lie algebrasl(2) may be applied
twice to the corresponding loop algebra. We can construct the Lax representations (4.10)
with one free parameterφ(λ) and use the following realization of the underlying algebra
sl(2) with one free parameterβ

s3 = xp

2
s+ = x2

2
s− = −p

2

2
+ f

x2
1′ = f. (4.25)

Thus, for the some first values ofK = N the corresponding superintegrable potentials in
(4.5) are

K = 0 V =
n∑
j=1

(
q2
j +

βj

q2
j

)

K = 1 V = 4q2
1 +

n∑
j=2

(
q2
j +

βj

q2
j

)

K = 2 V = 4q3
1 − 8q1q2+

n∑
j=3

(
q2
j +

βj

q2
j

)

K = 3 V = −5q4
1 + 12q2

1q2− 4q2
2 − 8q1q3+

n∑
j=4

(
q2
j +

βj

q2
j

)
.

If N = K, then the dress mapping (4.10) has theN + 1 arbitrary parameters given by
the functionφ(λ) = ∑N

j=0 αjλ
j . These parameters are related to the canonical shifts of

variablesqj → qj +αj and to the common rescalingV → αNV in the presented potentials.
Additional integrals of motion may be constructed by the rule (4.4) from the multivariable
generating functions2(λ, µ) (4.8).

We may construct similar superintegrable systems with rational potentials by using a
general form of the entrye(λ) (4.18) with the higher-order poles and applying a more
general Laurent projection (4.11). The presented method can be employed to construct
superintegrable systems on the other Riemannian spaces of constant curvature [15]. The
corresponding quantum systems may be obtained by canonical quantization [7, 25].

Taking into account theR-bracket (2.3) one can conclude that the entriese(λ) andf (λ)
could play roles similar to the standard creation and annihilation operators for harmonic
oscillator [14, 9]. By using a similar transformation of matricesL(λ) or L′(λ) one can
obtain the symmetric representation of these matrices

e(λ) = e(λ, a1, a2, . . . , an) f (λ) = e+(λ) h(λ) = h+(λ).
Here aj , a

+
j are the standard creation and annihilation operators. In this symmetric

representation of the Lax matrix the usual method of spectrum-generating algebras [4, 18]
is a part of the standard Bethe ansatz [14, 9]. It should be emphasized, that the algebraic
Bethe ansatz is a sufficiently universal procedure, which slightly depends on the particular
system in question. It allows us to interpret various concrete models as some representations
of a single generalized model, which is defined by itsR-matrix only.

As a third example, let us consider the Calogero–Moser systems. It is well known [20],
that both the Toda models and the Calogero–Moser models are obtained by Hamiltonian
reduction of the geodesic motion on the cotangent bundleT ∗G of a Lie groupG. For
the geodesic motion on symmetric spaces of zero curvature the canonical 2-form, the free
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Hamiltonian and equations of motion are equal to

w = tr(dy ∧ dx) H = 1
2 tr(y2)

ẋ = y ẏ = 0.
(4.26)

For geodesic motion on symmetric spaces of positive or negative curvature these quantities
read

w = tr(x−1 dy ∧ x−1 dx) H = 1
2 tr(yx−1)2

ẋ = y ẏ = yx−1y.
(4.27)

The Hamiltonians (4.26) and (4.27) have the following sets of integrals in the involution

Ik = tr(yk) and Ik = tr(yx−1)k.

The additional integrals—‘projections of angular momentum’ (1.5)—are equal to

Ijk = tr(qpj−1) tr(pk)− tr(pj ) tr(qpk−1). (4.28)

Here q = x andp = y for the first equations of geodesic motion (4.26) andq = ln x or
q = ln y with p = yx−1 for the second equations of geodesic motion (4.27).

In the reduction process the Lax matrices of the reduced system are expressed in
terms of x by a formula of the typeL = zxz−1, where z is some element inG [20].
For the geodesic motion (4.26) associated with the Calogero model with the rational and
trigonometric potentials, the HamiltonianH (4.26) remains superintegrable and images of
integrals (4.28) are integrals of a reduced system [26]. In the quantum mechanics whole
polynomial algebra of the integrals of motion for the Calogero model is introduced in [16].

Let us show how the image of a superintegrable Hamiltonian (4.26) appears in the
R-matrix formalism associated with the Calogero model. For instance, consider the Euler–
Calogero–Moser system [26]. Introduce a set of dynamical variables{(qj , pj )}Nj=1 and
{fij }Ni,j=1 (fij = −fji) together with the Poisson brackets

{pj , qk} = δjk (4.29)

{fij , fkl} = 1
2(δilfjk + δkiflj + δjkfil + δlj fki). (4.30)

In order to have a nondegenerate Poisson bracket it is assumed that the variablesfij are
restricted to a symplectic submanifold of (4.30). The Hamiltonian and the Lax matrix for
the Euler–Calogero–Moser system [26] are given by

H = 1

2

N∑
j=1

p2
j +

1

2

N∑
i,j=1 i 6=j

f 2
ij

(qi − qj )2

L(λ) =
N∑
j=1

pjejj +
N∑

i,j=1 i 6=j

(
1

qi − qj +
1

λ

)
fij eij

(4.31)

with the correspondingR-matrix in the form [3]

r12(λ, µ) = − λ

λ2− µ2

N∑
j=1

ejj ⊗ ejj − 1

2

N∑
i,j=1 i 6=j

(
1

qi − qj +
1

λ+ µ
)
eij ⊗ eij

−1

2

N∑
i,j=1 i 6=j

(
1

qi − qj +
1

λ− µ
)
eij ⊗ eji (4.32)
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where (eij )kl = δikδjl . In the reduction process thisR-matrix inherits the singular point
λ = ∞ from the initial rationalR-matrix. The corresponding superintegrable Hamiltonian
(4.31) may be defined by (3.2) withφ = 1

2 · λ−1

H = 8λ[tr L
2(λ)] = 1

2Res|λ=∞[λ−1 · trL2(λ)].

and the second Lax matrix is independent of spectral parameter

A = 8λ tr1[r21(λ, µ)L1(λ)] =
N∑

i,j=1 i 6=j

fij

(qi − qj )2eij .

The higher flows withφ(λ) = 1/k · λ−k−1 in (3.2) are superintegrable as well [26].

5. Conclusions

We have seen that superintegrable systems connected to geodesic motion can be realized
as isospectral flows on coadjoint orbits of loop algebras in the framework ofR-matrix
formalism. All these systems are associated with the special singular point of the classical
R-matrix.

Another classical superintegrable system with an arbitrary number of degrees of freedom
is the Kepler problem [1, 20]. In the proposed scheme we can consider a free geodesic
motion on the momentum sphere and use the stereographic projection with an appropriate
change of the time variable to study the Kepler problem [19]. However, this transformation
could violate theR-bracket (2.3) for the corresponding Lax matrix. It would be interesting to
construct the 2×2 Lax matrix for the Kepler problem and for the Kepler-like superintegrable
potentials listed in [8].
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